MSE 4761: Industrial Controls & Manufacturing (required)

Catalog Description: (2-3-3)

	Prerequisites: ECE 3710 Circuits & Electronics Students are introduced to industrial controls and the fundamentals of manufacturing with hands-on experience based on lab projects using industry software and hardware for communications and control.								
Textbook:	E.W. Kamen, Industrial Controls and Manufacturing, Academic Press, 1999.								

Topics Covered:

Prepared by:

- 1. Manufacturing fundamentals
- 2. Laplace transform and its use in control
- 3. Modeling and control of continuous-variable processes
- 4. Z-transform and its use in digital control
- 5. Predictive, adaptive, and neural net controllers

Donggang Yao

- 6. Boolean operations and its use in discrete logic control
- 7. Ladder logic diagrams and programmable logic controllers
- 8. Manufacturing systems
- 9. Production systems
- 10. Equipment interfacing and communications

Course Outcomes: Specifically, at the end of the course the students will be able to:

- 1. Describe the basic working mechanisms of common controllers, including PIs, PIDs, PLCs, and predicative and adaptive controllers.
- 2. Analyze control systems using mathematical tools, including Laplace transform, z-transform, and Boolean operations.
- 3. Design and conduct experiments, as well as to analyze and interpret data.
- 4. Apply knowledge of industrial control to solve polymer/fiber engineering problems.
- 5. Function effectively in teamwork.

Correlation between Course Outcomes and Student Outcomes:

Course Outcomes		Student Outcomes									
	a	b	c	d	e	f	g	h	i	j	k
1. Describe the basic working mechanisms of common controllers, including PIs, PIDs, PLCs, and predicative and adaptive controllers.											
2. Analyze control systems using mathematical tools, including Laplace transform, z-transform, and Boolean operations.											
3. Design and conduct experiments, as well as to analyze and interpret data.		x									
4. Apply knowledge of industrial control to solve polymer/fiber engineering problems.											
5. Function effectively in teamwork.						х					
Entire Course		1	0	0	0	1	0	0	0	0	0
0 = None or insignificant; 1 = Some; 2 = Moderate; 3 = Strong											

School of Materials Science and Engineering Student Outcomes:

- a) an ability to apply knowledge of mathematics, science and engineering
- b) an ability to design and conduct experiments, as well as to analyze and interpret data
- c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d) an ability to function on multidisciplinary teams
- e) an ability to identify, formulate, and solve engineering problems
- f) an understanding of professional and ethical responsibility
- g) an ability to communicate effectively
- h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i) a recognition of the need for, and an ability to engage in life-long learning
- j) a knowledge of contemporary issues
- k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice