Functional Polymers for Electronics, Optics, and
Renewable Packaging

{ Stingelin Lab @ Georgia Tech J

Our current research interests encompass the broad field of functional materials for organic electronics; multifunctional inorganic/organic hybrids for smart,
advanced optical systems; mixed conductors for bioelectronics; and materials for sustainable technologies. Establishing interrelationships between
performance, processing, and materials’ structure are thereby a central topic. Our group’s multi-disciplinary efforts in the Materials Science field have been
exploited to build collaborations across departments and faculties at Georgia Tech, on national level, and internationally.
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Materials for sustainable and renewable technologies { Inorganic-organic hybrid materials

Transparent IR mirrors and thermal switches for heat management (with Yee Lab) Mixed conduction materials exhibit simultaneous electronic and ionic conductivity, enabling

IR mirrors made of hybrid materials can reflect the sun’s radiation and potentially cool a building. direct interfacing between electronics and electrochemical systems. Potential applications for
Thermal switches can dynamically control the amount of heat flow. mixed conduction include batteries, synthetic neural and cardiomyocyte tissue scaffolds, and
biosensors, amongst others.
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Biomaterials for sustainable packaging (with Meredith and Kyriaki Labs) (with Reynolds Lab) Mechanical properties of hybrid gels

Sustainable packaging is enabled by blending and crosslinking renewably-derived polymers and 100 T - B
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Figure 9: Neutral ProDOT copolymer with ‘amphiphilic’
aliphatic and oligoether sidechains swells and deswells
reversibly, as shown by electrochemical quartz crystal
microbalance with dissipation monitoring
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10% CA Figure 10: Increasing titanium oxide hydrate content in

inorganic:organic hybrids with poly(vinyl alcohol)
results in higher storage and loss moduli, associated
with a higher density of crosslinks.
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Figure 3: Carboxymethyl cellulose has a Figure 4: FTIR spectra showing thermo-reversible Bragg Reflector
lower water vapor transmission rate than crosslinks for designing releasable adhesive layers

PET when crosslinked by citric acid (CA). to make more recyclable multilayer plastics. /
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[ Structure-property relationship of semiconductors and blends J s

Figure 12: Flexible capacitive UV sensors based on

Organic semiconductor devices (e.g., OPVs, Semiconductinglpalar DOlvmer blends polyvinyl alcohol is enabled by manipulating the hydrated

Figure 11: Structure of a solution-processed L : : :
OFETs, thermoelectrics) rely on a unique | | : ) . : titanium oxide concentrations to change the capacitance
’ Y g P3HT P3HT:PVDF 75:25 microcavity enabled by multilayers of alternating when exposed to UV doses.

property set derived from specific material a e Oof lo. refractive index and thickness.
and its combinations. However, structure-
property relationship of such semiconductor
materials and their blends, e.g., with respect
to transport properties, are not well
understood. Here, we focus on different
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polymers and their blends in order to gain Energy (eV) Energy (V) Local ordering affects electrostatic, Coulombic, and general photophysical processes in

deeper insights into them. Figure 6: Blending P3HT with PVDF may affect the PL lifetime, semiconducting polymers. Thus, understanding the impact of local ordering in these materials is

Processing induced due to the high dielectric constant of PVDF. We observe a , L
& dramatic change in the lineshape of the prompt (X) and crucial to optimizing them.

delayed (Y) PL, indicating that delayed PL stems from regions
of the film with different local ordering.
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Local ordering of semiconducting polymers
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Figure 13: Chemical structure and -
schematics of P3HT (left) and PBTTT Intrachain coupling
(right).
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R ————— f Figure 7: ITIC is a non-fullerene acceptor that undergoes phase
T \MQC transitions when blended and subject to temperature.
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Figure 5: Processing PBTTT under pressure and ) = Dult | SR PSP S of as rigid repeat units. Here, we
. : : : _ ; Tl e & scc local order due to the rigid
SUfﬁCIently' hlgh temperatures |nd.L|C€.S nereasec Figure 8: This diagram illustrates a monomer that is not Figure 14: Vector graph of one “backbone” of the kavak (Nati - /
order of liquid crystalline phase indicated by a g : g vibrational pattern of PBTTT oligomer. ackbone” of the kayak (Nationa

unique enthalpic recovery at 61 °C and secondary  birefringent (left), and a polymer with the same repeat unit that is IR AN SR A58 Geographics).
endothermic peaks at 82°C. birefringent due to the orientation of the polymer chains (right).




Manipulating and Characterizing Local Order of Semiconducting Polymers

SPEC =

Center for Soft
PhotoElectroChemical
Systems

Stingelin Lab at Georgia Tech

23,

[ Unraveling differences in disorder of flexible-chain and hairy-rod polymers J [Fast-scanning calorimetry to investigate phase behavior of hairy-rod polymers}

4 ) - A (a) (b) , Figure 5: Fast differential scanning
P3HT PBTTT ' calorimetry of a hairy-rod polymer to

. Structurally heterogeneous ) Structurally homogeneous estimate the glass transition temperature.
b o (a) Overview of the physical aging

(a) CgH13 ( ) experiment. (b) Representation of

/ \ ~ e __\Conditions structural recovery during aging. (c)
-4 Conventional DSC of N2200. (d) Fast DSC
S |n J ' S of N2200.
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Figure 2: Correlating structural and electronic
disorder. (a) Macroscale electrochemistry |
identifies a broader density of states (DOS) 175 200 225 250 275 3.00 -
distribution for P3HT than for PBTTT. (b) 2D ' Energy (eV) | e
electronic spectroscopy separates contributions '

from static vs. dynamic electronic disorder. (c) | Figure 6: Manipulating H/J 60
Proposed energy level distribution diagrams for aggregation by blending a hairy-rod

flexible-chain and hairy-rod polymers. polymer with an ionic liquid. (a)
Linear absorbance of the PBTTT:IL

] blends. (b) Hyperspectral PL of the
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1:2 blend highlights differences in
aggregation between IL-rich and
PBTTT-rich domains. (c) DSC suggests W& 48 LE LG 56 5d 59
the presence of two LC phases that Energy (eV) [C;,mim][TFSI]
vary with blend composition. [
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[ Disentangling the complexities of polymer:polymer phase morphology
phase-pure and more J-like Temperature (°C)
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Figure 7: Photophysics of
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Figure 4: Controlling intermixing in
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