- You are here:
- Home
Dissertation Proposal Defense – Karla Wagner
Event Type:
MSE Grad Presentation
Event Date:
Thursday, December 9, 2021 - 12:00pm
Talk Title:
"Characterization and Effects of Heterogeneities on Shock Compression Response in Additively Manufactured High-Solids Loaded Polymer Composites"
Location:
via BlueJeans Video Conferencing https://bluejeans.com/825121664/4708
Committee Members:
Prof. Naresh Thadhani, Advisor, MSE
Prof. Min Zhou, ME
Prof. Blair Brettmann, MSE/CHBE
Prof. Arun Gokhale, MSE
Brian Jensen, Ph.D., Los Alamos National Lab
"Characterization and Effects of Heterogeneities on Shock Compression Response in Additively Manufactured High-Solids Loaded Polymer Composites"
Abstract:
High-solids loaded polymer composites contain several hierarchies of heterogeneities that are of interest for use as, for example, ceramic green bodies or energetic crystals embedded in a polymer matrix. The recent and rapid growth of additive manufacturing (AM) and the engineering need for more complex geometries and individualized products has led to a surge of interest in fabricating high-solids loaded particle composites. AM via direct ink write extrusion processes introduces further complexity in fabrication of composites due to formation of process-inherent heterogeneities such as particle aggregation or porosities. The microstructure of such materials varies across different length scales, resulting in processing and mechanical behavior that is often difficult to control and predict.
The shock-compression behavior of heterogeneous particle-filled polymer composites often involves complex interactions, which can make it difficult to predict their dynamic mechanical properties. The shock-compression behavior is often dominated by mesoscale defects (including porosity) or interactions of the shock wave with interfaces and particulates. Traditional diagnostic methods, such as velocity interferometry, enable temporally-resolved measurements, but are limited in spatial resolution and generally provide a volume-averaged response. Spatially resolved measurements are necessary to measure the shock compression properties and provide sufficient information regarding the mesoscale processes which dominate performance of such materials. The goals of the proposed work are: to quantitatively characterize additively manufactured particle composite microstructures, determine their shock compression response, and correlate the observed shock response with the microstructural characteristics of the process inherent heterogeneities.