Skip to content

Materials Science and Engineering Georgia Institute of Technology Materials Science and Engineering

Menu
Close
  • ABOUT
    • CHAIR'S WELCOME
    • WHAT IS MSE?
    • ADVISORY BOARD
    • HISTORY
    • CONTACTS & DIRECTIONS
    • OUTREACH ACTIVITIES
    • STRATEGIC PLAN
    • CAREER OPPORTUNITIES
    • AVAILABLE POSITIONS
  • VALUES
    • DIVERSITY AND INCLUSION
    • CREATING RESISTANCE TO SEXUAL HARASSMENT (CRSH)
  • GRADUATE
    • CURRENT STUDENTS
    • PROSPECTIVE STUDENTS
    • FAQ
    • REQUEST INFO
    • APPLY NOW
    • CERTIFICATES
  • PROSPECTIVE STUDENTS
    • GRADUATE
    • UNDERGRADUATE
  • UNDERGRADUATE
    • ACADEMIC ADVISING
    • CURRICULUM
    • MENTORING PROGRAM
    • MSE MINOR AND CERTIFICATES
    • PROSPECTIVE STUDENTS
    • REQUEST INFO
    • RESEARCH
    • SCHOLARSHIPS
    • STUDENT RESOURCES
    • CHANGE MAJOR
  • PEOPLE
    • ALL
    • FTE FACULTY
    • STAFF
    • ACADEMIC PROFESSIONALS
    • RESEARCH SCIENTISTS/POST DOCS
    • ADJUNCT FACULTY
    • COURTESY APPOINTMENTS
    • EMERITUS FACULTY
    • GRAD STUDENTS
    • ADMINISTRATION
    • STAFF - WHO DOES WHAT
  • GIVING
    • STUDENT SUPPORT
    • SUPPORTING THE MILL
    • SUPPORTING RESEARCH AND FACULTY
    • SUPPORTING THE SCHOOL
    • WHY GIVE NOW
    • WAYS TO GIVE
  • MILL
  • RESEARCH
    • MATERIALS AND CHALLENGES
    • RESEARCH CENTERS
    • INDUSTRY RELATIONS
    • TOPICAL WORKING GROUPS
    • FACULTY RESEARCH OVERVIEW
  • INDUSTRY
  • SAFETY
  • Georgia Tech Home
  • Campus Map
  • Directory
  • Offices
  • Facebook
  • YouTube
Search

Search form

  • You are here:
  • Home

Dissertation Proposal Defense – Jiaxiong Li

Event Type: 
MSE Grad Presentation
Event Date: 
Wednesday, January 19, 2022 - 2:00pm
Talk Title: 
“Transition Metal Complexes as Latent Catalyst and Adhesion Promoter in Epoxy Resin”
Location: 
Via https://bluejeans.com/6488282451/ BlueJeans Video Conferencing

Committee Members: 

Prof. C.P. Wong, Advisor, MSE

Prof. Meilin Liu, MSE

Prof. Zhiqun Lin, MSE

Prof. Seung Soon Jang, MSE

Prof. Vanessa Smet, ME

 

“Transition Metal Complexes as Latent Catalyst and Adhesion Promoter in Epoxy Resin”

Abstract: 

Epoxy based materials are widely used in electronic packaging, serving as key enablers for many structures and in various aspects determining the process efficiency and package reliability. Epoxy curing control towards designed temperature response and thermal profile are desired to fulfill the needs of specific applications such as no-flow underfill in advanced flip-chip packages. As such, controllable latent catalysts have been pursued for decades. Epoxy-copper interfaces are commonly found at encapsulant, substrate and printed circuit board applications where the contacts of epoxy composites are made with lead frame, mentalizations and bond wires. The delamination and crack of epoxy-copper interfaces is one of the major failure mechanisms of a package. Traditional approaches include pre-treatment of substrate with physical/chemical etching and applying coupling agents. However, the covalent bond or hydrogen bond formation assisted by coupling agents are susceptible to hydrolysis degradation under moisture aging. Coordination bonds between copper and ligands with O or N doners on the other hand are more stable against moisture. Targeting at these issues, novel in-formulation metal complex based latent catalyst and adhesion promoter are proposed in this work.

s thesis demonstrates the effects of introducing transition metal chelates on the curing kinetics and moisture-stressed copper-adhesion performances of epoxy resin. First row transition metals (Co(II), Ni(II), Cu(II), Zn(II)) chelate-based modifiers bearing β-diketonate and phthalocyanine ligands were investigated. The first part of the thesis is on effects of metal complexes on the curing kinetics of epoxy resin. A unique interaction between the metal β-diketonates with Lewis base phosphine catalyst resulted in a controlled curing latency. It was found that other than the metal type, the inductive effects of original ligands played a crucial role in determining the metal-phosphine interaction and thus the latency pattern. In depth studies on the Co(II) based metal complexes on such curing control helped reveal the chemical equilibrium nature of the coordination reaction, and the underlying ligand mediated metal-base interaction through chemical characterizations and calculations. The second part of the thesis presents the effects of the metal complexes on the adhesion strength of epoxy-copper joints when subjected to moisture aging. The parametric studies on transition metal complexes with different metal and ligand types provided trend plots of the adhesion promoters. The mechanisms of the adhesion improvements are to be examined on each component of the joint: copper substrate, epoxy resin and the interfacial bonding zone. Extensive characterizations of the thermo-mechanical, chemical, electrical and physical properties will provide knowledge on the nature of adhesion and moisture resistance enhancement.

ABOUT

  • About
    • Chair's Welcome
    • Strategic Plan
    • What is MSE?
    • Careers
    • History
    • Contacts & Directions
    • Outreach Activities
    • External Advisory Board
    • Events
      • Past Events
    • News
    • Seminars
      • Brumley D Pritchett Lecture Series
      • Industry Executive Seminars
      • Past Seminars
      • Upcoming Seminars

Student Resources

  • Undergraduate Handbook
  • Undergraduate Registration
  • Overload Requests
  • Graduate Handbook
  • Lab Safety Policy
  • Student Mentoring Program

Faculty & Staff Resources

  • Faculty & Staff Directory
  • Administration
  • Institute for Materials
  • Financial Forms

Quick Links

  • College of Engineering
  • COE Ethics Statement
  • Bursar's Office
  • Registrar's Office
  • International Education
  • Financial Aid
  • Student Affairs
  • Tech Lingo
  • Title IX/Sexual Misconduct
Map of Georgia Tech

Georgia Institute of Technology
North Avenue, Atlanta, GA 30332
Phone: 404-894-2000

  • Emergency Information
  • Legal & Privacy Information
  • Accessibility
  • Accountability
  • Accreditation
  • Employment
  • Login
Georgia Tech

© Georgia Institute of Technology